Etched graphene quantum dots on hexagonal boron nitride
نویسندگان
چکیده
منابع مشابه
TOPICAL REVIEW Graphene on Hexagonal Boron Nitride
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabricat...
متن کاملQuantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride
T materials have drawn tremendous attention in the recent past in terms of both interesting fundamental physics and possible applications in future generation devices. Graphene and hexagonal boron nitride (h-BN) are the two most promising candidates for this purpose. 3 Single layers of graphene and h-BN have been fabricated and found to be stable at room temperature. 8 The most significant diff...
متن کاملEpitaxial growth of single-domain graphene on hexagonal boron nitride.
Hexagonal boron nitride (h-BN) has recently emerged as an excellent substrate for graphene nanodevices, owing to its atomically flat surface and its potential to engineer graphene's electronic structure. Thus far, graphene/h-BN heterostructures have been obtained only through a transfer process, which introduces structural uncertainties due to the random stacking between graphene and h-BN subst...
متن کاملSTM Spectroscopy of ultra-flat graphene on hexagonal boron nitride
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point[1, 2]. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2013
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4818627